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ABSTRACT

This paper considers adaptive control systems with a nonlinear

compensator instead of a conventional linear compensator for modification.

In order to overcome the intractability of the mathematical equations

arising out of the optimization of nonlinear systems subject to random in-

puts, staircase techniques have been used.

Optimizing equations have been derived for calculating the optimum

parameters of the compensator for the least mean-square error between the

actual output and the desired output in terms of the statistical properties

of the input signal and the plant dynamics. An example of an input-adaptive

system has been calculated showing that even a simple no-storage power-series

compensator gives a smaller mean-square error than the optimum linear com-

pensator.
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i. Introduction

An adaptive or self-optimizing control system may be defined as one

which is capable of automatically adjusting its parameters with changes in

environment. These changes may be either in the statistical properties of

the input function, or in certain parameters of the plant dynamics. The

first part of the adaptive process is the identification of these changes.

The second part is the modification of certain parameters of a compensator

(or controller) which will optimize the performance of the system, based

on some specified criteria.

A number of various schemesl2'l*for the modifying process have been

discussed in the past, but in all of these instances a linear controller

is used. The controller provides either a variable gain, or some variable

time constants that can be used to cancel the undesirable poles of the

plant.

The object of this paper is to study the effect of using a non-

linear controller instead of a conventional linear device. Due to the

fact that the mathematics of nonlinear systems subject to continuous in-

puts is rather involved, it will be considered here that the data are

sampled regularly and converted into a staircase function, by using a

zero-order hold. It may be added that if a digital computer is used for

deciding what setting of the controller would give the optimum performance,

it is necessary to sample the data. Hence, it is conceivable that the

proposed scheme would be suitable for adaptive systems controlled by

digital computers.

2. Several Systems for Adaptive Control Using Linear Controllers.

A number of various systems have been proposed for adaptive control

* Numbers indicate references.



with a linear controller. These can be put into two basic types as

shown in Figure I and 2.

The system shownin Figure I is the so-called "model-reference
system" developed at M.I.T. 4'6 This system utilizes a reference model

for providing the desired output, which is comparedwith the actual out-

put. The error is then fed into a computer which determines the modifi-

cation required in the linear controller in order to optimize the perfor-

mance. Several configurations have been proposed for the linear controller,

but in general, it may be considered as being madeup of the parallel

combination of a number of lag networks with adjustable gains. In other

words, the controller has the following transfer function:

N

G(s) --A + Ak
o s+a k

k=l ................................. (l)

where the gain constants Ak are controlled by the computer, and the lo-

cation of the poles at -ak is fixed on the basis of bandwidth consider-

ations.

The various computations required for the above scheme can be cal-

culated by using staircase functions 7. These computations can be sum-

marized in the following steps:

(a) Immediate past records of the staircase input.rx(t) and the

desired output Jrz(t) are sampled 2N + i times. The interval of observa-

tion will be taken as -T to T + T, where T = NT, and T is the interval
o o o

between each sample. The samples are used to calculate the correlation

function ordinates, _xx(kT) and _xz(kT).

(b) The following coefficients are then calculated:

and

N

C_ = I _'?'I_ (jT) _xx(k+'--_ T) .....................

j=O

N

j=O

(2)

w

 xz(k+j .......................(3)



where_(kT) is the staircase P-response of the plant and _,_,(kT)

are the correlation function ordinates of the plant staircase P-

response.

Note: Here it has been assumed that the plant parameters are known.

Methods for plant identification will be discussed later.

(c) The computer then solves the following equations for the

staircase P-response ordinates u of the optimum linear compensator
n

that will give the least mean-square error:

"3-

_oUo+aluiq<_2u2 + ....... +_N_ lUN - I_NUN=_o

CZl_o+C_oU l'b_lu2+ ..... +_N- 2UN -I+_N -IUN=_ I

_2Uo+C_lU 14<_oUo+ .... +_N- 3UN -I+_N -2UN=_2 ..................... (4)

_NUo+_N -IUI_N- 2u2+ .... 4_IUN- Iq_oUN=_N

(d) From the optimum u's calculated above, the computer solves

the following equations to determine the gain-constants Ak:

_IAI+_mA2+_A3 + ........................ +_NAN=Ul

_i _ IAI+Ame 2A2+_ e 3A3 + ................=. +_NeNAN--U 2

2 2 2 2
e_A_+_e_A_+£b,e_A_+ +_.e$.A.._ (5)

Z_I I i g Z Z -_ J _ ............... IN _ _ J ..............

N-I N-I N-I N-I
AI01 AI+_0 2 Am+A30 3 A3+ ....... +_0N AN=U N

A _- u ......................................... (6)
O O

where

l_e-ak T

%
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and

= -akT
ek e .................................................. (8)

ak being the poles of the compensator, defined in Equation (I).

(e) Finally the computer sends control signals to the controller,

adjusting the various gain constants, as required by Equations (5) and

(6).

It is presumed that all calculations and adjustments are made in

a very short time and that this time is less than the sampling interval;

therefore at the next sampling instant the computer is ready for a further

modification, depending upon the changes in the statistics of the input

as well as the plant dynamics. In the case of slower computers the

method would still be valid if during the computation period there has

been no change in either the statistics of the input or the plant dy-

namics.

The linear controller used for this system consists of an attenuator

and N lag networks. It may also be noted that 2N + i samples of the input

and the desired output are required for computing the optimum gain con-

stants. Therefore, a relationship between the number of channels (or lag

networks) required in the controller and the extent of correlation between

the present value of the signal and its past record is obtained.

The scheme shown in Figure 2 does not require a model and has been

used, with slight modifications, in a number of practical systems 12, with-

out computer control. In such cases, the compensator consists of just a

variable gain element. Staffin 12 has suggested a controller requiring a

variable gain as well as an adjustable compensation network for providing

cancellation zeroes to remove the effect of a lightly damped pair of poles.

This method can be used also with a digital controller, but the

optimizing equations are more involved than Equation (4). Optimizing

equations have been derived in Appendix II.

3. Staircase Techniques for Plant Identification

In the previous section it has been tacitly assumed that the

characteristics of the plant are known. In general, this requires some
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arrangement for the identification of the plant dynamics. A numberof
different procedures have been proposed using analog computers8'9 How-

ever, when a digital computer is used for computation, it is more

practical to use the samecomputer for plant identification as well.
A staircase technique for plant identification is shownschematically

in Figure 3.
This method has the advantage that no test signal is required.

It does, however, require measurementof the input to the plant and the

output over a number of intervals and computation of the correlation

function ordinates _ (kT) and _ (kT). Frommeasurements, the
.rx _x -Fx_ Y

ordinates of the staircase P-response of the Plant _(kT) can be cal-

culated by solving the following set of simultaneous equations:

N x(Ir-sl T) = __l-x ..................I -_ (rT) _.rxX 5y (sT) (9)

r=o

for s = 0, i, 2, ........ N.

It may be pointed out that the proposed method does not take into

account the error introduced in measuremen£s. If desired, however, these

errors could be reduced by making multiple measurements II of the plant

input and output.

4. Adaptive Systems with Nonlinear Controllers

So far it has been assumed that the controller has a linear

structure, capable of adjusting certain gain constants as well as certain

time constants. It seems possible that with a nonlinear controller the

performance of an adaptive system may be considerably improved. At least

one could intuitively argue that since nonlinear filters give smaller
14

mean-square error compared to linear filters subject to random inputs ,

it is expected that nonlinear controllers would give a smaller mean-

square error in the case of adaptive systems subject to random variations

in the input signal as well as the plant parameters. Moreover, during the

interval between the adjustments in the parameters of the controller, a

suitably designed nonlinear system would work better than a linear system

in many situations.
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As a simple example, it will be assumedthat the controller is an

instantaneous (no memory) nonlinear device whose output and input are

related through the following equation:
M

v(rT) = I akf k [x(rT)] ................................. (I0).
k=o

For a still simpler case the right-hand side of Equation (I0) may

be replaced by a power series, e.g.:
M

v(rT) = I akxk(rT) .................................... (Ii)
k=l

of which the coefficients ak are adjustable• The optimum values of ak
which will give the least mean-squareerror between the desired output

and the actual output are obtained by solving the following equations:

_llal_12a2 + ............... +(_IMaM= BI

_21al+fz22a2+ ............... +<_2MaM= _2 ................... (12)
..o,,oo, ...... oo, ..... oo**,.o,**o,o,o°o

where

and

_Mlal+_M2a2 + ............... +O_Ma M = BM

N N

r=o S=O

N

_k _ I _/_r ¢
r--o

k (rT) .................................. (14).
xz

The nonlinear correlation functions in Equations (13) and (14)

are defined as
N-r

OxJxk (rT) = 1 i x jN-r+l p=o p

N-r

and ¢ k (rT) = i I x k
N- r+l p=o p

x z

k
• X

p+r
................(15)

z .................. (16).
p+r
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In general, Equation (i0) represents a multipath no-storage non-

linear device, shownschematically in Figure 5.

The optimumvalues of ak, which will give the least mean-square
error between the actual output and the desired output, are obtained by

solving the following sets of equations:

M N N Ir-slT = l'_r @j rT)I aml I _r_s @mj(f; r z(f;
m=o r=o s=o (17)

.oo._,.o.moge.l.-*

for j = o, 1, 2, ..... ,M

where the nonlinear correlation ordinates @mj (f;lr-s[ T) and _jz(f;rT)

are defined as below:

N_-s E ]__ [ I%j (f;[r-s[T) n-s+l 'I f Xp
p=o m

for s) r
N-r

Z _ [Xp]; N---'I_ m
p=o

and
N-r

i I
@jz (f; rT)=N-r+l

p=o

................... (18)

.fj [Xp+r-sl

for s (,r

[xpl.Zp+r....................

In the more general case of a nonlinear device with storage, it is

always possible to consider it as a cascade combination of a no-storage

nonlinear device and a linear system with storage 15'16 Hence, the

analysis presented in this paper may easily be extended to include such

nonlinear devices with storage.

5. Example of an Input-sensing Adaptive Control System:

To compare the relative performances of linear and nonlinear com-

pensators an example of an input-senslng adaptive system is taken. The

plant is assumed time-invariant, and the desired output is taken as being

equal to the input. As only a small number of samples of the input data

are used in a practical case, twenty-one samples of a random signal are
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assumedas input to the system. The optimum u's for the linear compen-
sator are obtained by solving Equations (4), and these are used to

determine the gain-constants for the linear compensatorhaving one

attenuator and ten lag networks, by solving Equations (5). The mean-

square error for the system with optimum linear compensation is cal-
culated.

A nonlinear compensator is, then, assumed,of the power-series

type, with the first five powers. The optimum coefficients for the

power series are calculated using Equations (12) and the mean-square
error between the actual output and the desired output is evaluated.

Details of the calculations in this example are given in Appendix

III.

6. Conclusion:

This example shows that even a simple power-series no-memory non-

linear controller has a performance excelling that of the optimum linear

controller. It is, therefore, expected that a nonlinear controller with

a finite memory will have a much better performance 14. A number of such

nonlinear controllers will be investigated in a following paper.

It may be added that although a particular form of linear com-

pensation was assumed; this did not enter into the calculation of the

optimum u's of the compensator, nor in the mean-square error. Hence,

although it is possible to obtain alternative configurations for the

linear compensator, the mean-square error cannot be reduced further

without using nonlinear devices.
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Appendix I: MATHEMATICAL FORMULATION OF STAIRCASE ANALYSIS

I. The theory of staircase analysis has been presented very well by

Brasad in his doctoral dissertation (7). However, due to the general

non-availability of his work in this country, the theory will be briefly

reviewed in this Appendix.

2. The Defining Equations: To define the staircase function, one can

use the concept of the well-known zero-order hold circuit, the weighing

function for which is given by

P(t) = u(t)-u(k-T) ....................................... (AI.I)

where u(t) is the unit-step function, and T is the "sampling interval".

The function P(A) is shown in Figure A.I.

The extrapolated output of this "clamp" to input x (t), shown

schematically in Figure A.2, is given by

or,

Oo

_OO_u oo

-o°oo

= i x(nT)

n=-oo

,7

Ix(t) = _ x(nT)
n=- o_

S(t-7-nT)dT

n=-oo

[u(tu (t

P(t-nT) ........................... (AI. 2)

where P(t-nT) represents a rectangular pulse of duration T and unit height,

applied at t-nT; e.g.,

e(t-nT) = (I, for nT_t _(n+l)T
(0, elsewhere ................................ (AI.3).

Equation (AI.2) defines the transformation of the continuous time

function x(t) into a staircase function jrx(t), with the following char-

acteristic features:

(a) The value of _x in a sampling interval remains constant, and

equal to the value of x(t) at the commencement of the interval.

(b) If the observation of x(t) is limited to a finite time period,

-T to T +T; where T =NT, the "staircase function" takes the form
o o o

N

j-x(t) = _ x(mT) P (t-mT) .......................... (AI.4).
m=-N
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(c) It is assumedthat the sampling interval T has been selected

in compliance with Shannon's Sampling theorems.
Another definition of _x(t) is given below, which may be given

a physical meaning consistent with Figure AI.2.

r

a-x(t) = _ _x(_).P(t-_-) g(¢-nT)d_- .............. (AI.5).

n = -_ -_

3. Properties of the operator P(t):

where

(i) _rP(t-mr T) = (P(t-mT) if all m r = m simultaneously
oo (0, otherwise .......................... (AI.6)

J(ii) P(t-iT).P(t-jT). _ dt = _ij ..................... (AI.7)

_.. = Kronecker delta
lj

(iii) The output of a physically realizable linear system of

weighing function w(t), to which the pulse P(t) is applied at t=0, is

given by f ==

u(t) = I_ .P(t
--(3

and .[-u(t) = >_ u(nT) .P(t-nT)

n=o

The function _u(t) will be referred to as the "staircase P-

response" of the linear system, and for brevity, u(nT) will be denoted

as u .
n

A short table of the staircase P-response of elementary linear

systems is given below:

w(t) W(s)

i
1. u(t)

2. tr-I 1

(r-l) ! _r

-at I
3. e

....................... (AI.8)

....................... (AI .9).

Tr [nr -(n-l) r]

I e-a(n-l)T [l-e-aT]a

un (Uo=O)

T



,

k-i -aT
t e

(k-l)!

5. sin cot

6. cos _t

-at
7. e sin 0Jt

-at
8. e cos _t

k-I

I e-a(n-l)T I Tq(n-l>q -anT
-e

(s+a)k q=o ak- qq,

0o

2q 2 col[ (n-l) T cos o0nt]S -- COS 6D -

__s ]2+02 i [sin _nT - sin 0_(n-l)Ts

1 e'a(n'l) T (m(n-1)T +(s+a) 2_2 _ sin

s+a le_a(n_l)T I]I cos (m(n-l)T +(s+a) 2+2 _"

r

where r= V_2+a2 _ = tan -_
a .

13

k-I

Tn
L

q=o a k- qq [

4. Linear Staircase Systems: It should be noted that

and

x(t-r ) = _ x(nT).P(t-%7-nT)
n

x(t+_) = Z x(nT).P(t+_-nT) ......................... (AI.10).
n

For the linear system of Figure AI.5,

y(t) =fw(_)._x(t-_)d_ = _lw(_)_ x(nT) P(t--C-nT)d_
o n

oo

or, y(t) = I x(nT) u(t-nr) = X x u(t-nT) ........... (AI.II)
n

oo n n=o

where u(t-nT) =Ji w(_) P t-_-nT)d_: is the output of the linear system

to the input P(t°nT) applied at t=nT.

The staircase output is given by_, ot3

_FY(t) k_o Yk P (t'kT) _ I= = &___ UrXk_ r P(t-kT) ...... (AI. 12)
= k=o

and
Yk = UoXk + UlXk-l+ .... =

r=o

k k

_ x = I Xk_rUrr Uk-r .. (AI.13).
r=o r=o

5. Nonlinear Staircase ,Systems: Consider the zero-memory (or instantan-

eous)system of Figure AI.5 having the nonlinear funetlonal f [ J.

IY(t) = f x(t)

I_ ] - l [ } P(t-nT) (Al.14,.= f XnP(t-nT) f xn ........
n n
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Similarly, for the system of Figure AI.6

_n N ] In rlJ-y(t) = f I UrXn-rP(t-nT) = I f I UrX n- ....(AI.151
r=o n r=o

Equations (AI.14 and (AI.15) display the following characteristics:

(a) The instantaneous nonlinearity is additive only with respect

to the subscript which is symbolic of the sampling instants. For example,

if additivity is considered with respect to r in (AI.15), the absurd

relation n n ]

uxf r=o r=o n r n-r J results.

(b) The pulse operator is such that the functional f [ ] may be

,%

considered homogenous, leading to

= .................
which is consistent with physical reasoning as well.

Now consider the general no-storage multipath system shown in

Figure AI.7.

Here,

where f
_,n

_- y(t)

M

°I a_[
_=o _

M

=7 >_af
IX--O n
M

-- E
t.1.=o

............................ (AI. 17)

[xn] P(t-nT)

I f P (t-nT) ..................... (AI. 18)
n a, _,n

th
represents the output of the _ nonlinear path when the input

pulse is x = x(nT).
n

If f is replaced by [ ]_, a power-raising device, one obtains
L J

the power-series filter, and
M

[ ]m p(t-nT) (AI.19).
X n ,j,oe.o,,e°e.e,.,.o,e..-f y(t) a

=i

Consider the delay-line filter shown in Figure AI.8. The tapping

intervals on the delay-line has been taken as T, the same as the sampling

interval of the staircase input. The f's are zero-memory nonlinear two-

ports, consistent with Equation (AI.14).
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th
The output of the

.[x }dIX n _a

=Zf
_,nM n

.fy(t) = _ I f P(t-_+n"---T)
_=o n B,n

weighing function is given by

[Xn] P (t-_Pn----T)

P(t-_+nT)

.................... (AI. 20).

We shall now consider a nonlinear system with storage, shown in
c

Figure AI.9, which is made up of an instantaneous nonlinearity f[ ],

followed by a linear system of weighing funtion w(t).

co oo
Here,

_y(t) = j w(7-) f _l-x(t-_Id_ "fw(-_). f_XnP(t-nT-_) ]d_

y_ [d. u_tn_'............................_A__,
n

[ ]u_r-r_.............................._A__at t=kT, Yk-- 1 f - -Xr

r=-o:_

If the linear system is to be physically realizable, (for sampling

to commence at t=o),
oo

_r y(t)=
k=o

k

I f [Xr] u (k-_-r T} .P(t-kT) ............. (A1.23)
r=o

k

=I I u ..[x___l_, ..............._,._4,.
r . _

k=o r=o

For the general multipath storage filter shown in Figure AI.10,

" f[ [ 1y(t) = I wi(17) fi J-x (t-T) d
i=o oo

M

= i_..o I fi,n ui(t-nT) .......................... (AI.25)= n

and
M k

i=o k r=o
Ui,rfi,k_rP(t-kT) ................ (AI°26)

where u. = u.(rT) = 0 for r _s.
l,r i
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6. Nonlinear Staircase Filters of Higher Orders:

Following Zadeh, assumethat f [ ] has a power series expansion
of the form oo

f x = a x ................................... (A1.27)
r

r=o £

where it is implied that in the least mean square error sense f[ ]may
be

approximated by
M

f x _-_-- _ ax .....................................
r=o r

Hence, the staircase output in the case of the nonlinear filter

of "order M" defined by (A1.28), is
M N

/-y(t) = I I arX k P(t-kT) .......................... (AI.29)
r=o k=o

u k

where Xk = I UsXk-s

S=O

Equation (A1.29) can be derived alternatively as below"

_ N

y(t) = a + al J_o w('_l) Xnl P(t-nlT- _1) d _'1
o nl=°

+ a 2 w('l:l) w(_ 2 ) P(t-nT- "_ l ) .
o

n =o

1

N

IXn2 P(t-n2T-

n2=o

+, f:..
o o

N

x .P(t-nMT- _ )

N

= a°4"al I Xnl u(tl-nlT)

nl=o

2)d _ id _2

...w( _M)LXn]P(t-nlT- _i) ....

nl=o

dTL I ...... d_ M
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N N

+ a2 1 xnl u(t-nlT) I
nl=o n2=o

x

n 2

f

u(t-n2T)

_,,o,,.,,.,o,o

N N

+aM I xnl u(t-nlT)''" I

nl=o nM=o

x u(t-nMT)....(At.30).

Note that at t=kT, the coefficient of a
r

N N

I Xnl u(kT-nlT) ..... _ Xnr

nl=o nr=O

which leads to

.[ y(t) =

is

r

u (kT-nrT) = X k

M N

r=o o
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Appendix II: OPTIMIZATION OF LINEAR AND NONLINEAR STAIRCASE SYSTEMS

I, The theory discussed in Appendix I will be used to derive the

various optimizing equations used in this paper.

2. Model Reference System with a Linear Controller: Consider the

model reference system shown in Figure I.

The linear controller has its staircase P-response given bysu(t),

and the plant is described by its staircase P-response .1-'_(t).

Using equation (AI.13), the staircase output of the controller

is given by

_1-v(t)

and

or,

and

oo k

= 7. I u P(t-kT) (A2. I)r Xk-r .......................
k=o r=o

k

vk = _ u Xk_r . (Am 2)
r ,, o,.., ..,e.....,..oo.e.,*oo..,., • •

r--o

Similarly, the staircase output of the Plant is given by
k

.[ y(t) = _. I _r Vn-r P(t-nT)
n=o r=o

_[-y(t) = I UrXk. r "_n_kP(t-nT) ................ (A2.3)
n=o k=o r=o

N k

Yn = _ I UrXk-r _n-k . ...................... (A2.4)

k=o r=o

The mean-square error between the desired output J-z(t) and the

actual output ._-y(t) is given by
N

2

_= i I [Zn-Ynl
N n=o

where N = total number of samples.

............................ (A2.5)

With considerable algebraic manipulation, equation (A2.5) can be

transformed as

where

i

2
£ =

N N N

_rz/.z(O) -2 1 Un_ n + I I _ u _ .... (A2.6)r s Ir-sl
n=o r=o s=o

N

_.[z/-z (°) = g Zn ..................... (A2.7)
n--o
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N

_ = Z _._l.p(jT) _ _ x jx (k+j--'T).................. (A2.8)
J=O

N

_k = I _ (jr) _j-x _-z (_T) ........................ (A2.9)
j=o

and

= -_ k _k+J ........................ (A2.10)._5_-_(JT) k=o

The optimum u's, for minimum mean-square error are obtained by

setting the various partial derivates _ _ if Equation (A2.6) to

r

zero. These give the set of simultaneous equations for the optimum u's

as in Equation (4).

Once the optimum u's are obtained, substituting these back into

Equation (A2.6) gives the minimum mean-square error for the linear case,

2 N

f =_I (o) - I Un_ n ......................... (A2.11)
min z Iz n= o

The next problem is to determine the linear network the staircase

P-response for which would correspond to the optimum u's obtained. Since

only a finite number of these u's are known, a number of different con-

figurations are possible. For instance, one may assume that the transfer

function of the linear controller is given by

N

G(s) = A + I Ak ........................... (A2.12)

o k=l s+a k

where A represents a variable attenuator, and A k represents variableo

gain constants. The location of the poles, A k, is arbitrary, except

that they should not be equal. However these may normally be fixed on

considerations of bandwidth.

Using the table in Appendix I, the staircase P-response for the

transfer function given by Equation (A2.12) is obtained as

u =A
o o

N I- _akT

Ur = Z Ak ak
k=l

Equations (A2.13) may be arranged as in Equations (5) and (6) for

(r'l) akT ................. (A2.13).

solving A k .
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and

For the system shown in Figure 2,

N k

Yn = I I Ur _k-r "_n-k
k=o r=o

z
n

N k

--I
j=o

Also, 6 = z -x
n n n

....................... (A2.14)

k___o Ir=our6 k-_'j-k hn-j
................... (A2.15).

.............................................. (A2.16).

Equations (A2.15) and (A2.16) may be used to eliminate 6n, giving

and explicit relationship between z and x Finally one may find the
n n

optimum values of u by taking partial derivatives of the expression for
r

the mean-square error. However, the algebra gets very involved, and so,

this will not be pursued further in this paper.

4. Optimlzin_ Equations for a System with Nonlinear Compensation:

Consider the system shown in Figure 4, the nonlinear controller

being defined by Equation (I0). The staircase output of the controller

is obtained by noting that
M

[I .....................................V = E akf k xn
n k= O

The staircase output of the system is, therefore, given by

_ry(t) = _ _. _'r Vk-r P(t-kT) ...................... (A2.18)
k=o r=o

Using the expression for v from Equation (A2.17) the output at the
th n

n sampling instant is given by

M n

Yn = I _- arfr [Xn] _n-k .......................... (A2.19).
r=o k=o

The mean-square error is given by
N

-- 2

62 = 1N En=o (Zn-Yn)

N

i I
= ¢_rz;z (o) -

n=o

N
2

2z y + I _. Ynnn _
1%-----0

........... (A2.20) .
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With considerable algebraic manipulation, equation (A2.20) can

be put into the following form:

-- M
C 2 = _rzsz(O)-2 1

m--o

a
m

l_'r _mz (f;rT)
r

+ _m In aam n I l'f_r'_s
r s %n(f; Ir-sl T) ......... (A2.21)

where the nonlinear correlation ordinates are defined as below:

and

N-r

[1N -r+l _ fm Xp
p=o

z ............ (A2.22)
p+r

@mn(f; Ir-slT) = N-s+l I fm L fn Xp+s-r
p=o

for r L. s

N-r

i [Xp+rlN-r+l _ f [Xp n s= m t

p=o
for r_ s ............ (A2.23).

Finally, the optimum values of ar may be obtained by setting the

partial derivatives _ _ = 0. The optimizing Equations (17) result.
_a

r

•The minimum value of the mean-square error is given by

-- M (f;rT) ....... (A2.24)
6̀ 2 = _A-z/z (°) I am _ _['r _mz
min m=o r
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Appendix III: EXAMPLEOFANADAPTIVESYSTEMWITHNONLINEARCOMPENSATION

As an example, a time-invariant plant is assumedwith transfer-
i

function given by s--4=T • For a sampling interval T=0.1 second, the stair-
case P-response of plant is given by

•r'(o) = o

-(n-l)T -0.1(n-l) I
_(nT) = e .(1-e -T ) = e (l-e -0" )

The first eleven of the staircase P-response ordinates are given

below: _(0) = 0

_(T) = 0.095163

7"(2T) = 0.086106

"r(BT) = 0.077913

]_(4T) = 0.070498

_(5T) = 0.063789

QC(6T) = 0.057719

]_(7T) = 0.052227

7_(8T) = 0.047256

7_(9T) = 0.042759

-r(10T) = 0.038691

The random signal input to this plant is given below:

t x(t)

-10T 1.05

-9T 2.24

-8T 2.41

-7T 4.22

-6T 3.76

-5T 7.79

-4T 9.96

-3T 9.63

-2T 8.96

-T 8.54

0 5.86

T 2.89

2T 6.36

3T 0.94

4T 1.04

5T 0.71

6T 5.11
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7T 0.24
8T 0. I0
9T 5.22

10T 0.71 .

The desired output is taken as equal to the input, i.e., z(t)=x(t) •

To determine the optimum linear compensator, the various correlation

functions are calculated and used to calculate the various _'s and _'s

defined in Equations (2) and (3). These are given below:

_0 = 5.150164

= 4. 785945
i

(_ = 4. 495699
2

(_3 = 4. 158237

_4 = 3. 752778

(_5 = 3. 375715

56 = 3.106233

(_7 = 2.861431

58 = 2. 561063

(_9 = 2.399077

_0 _ 12.84787

_i = 12.03603

_2 = 11.10204

_3 = 10.08288

84 = 9.11111

_5 = 8.32439

_6 _ 7.62324

_7 = 6.77098

_8 = 6.27139

_9 = 5.67021

_I0 = 2.190972 _i0 = 4.91666 .

These are used in Equations (4) to calculate the staircase p-response

ordinates of the optimum linear controller. These are -

Uo = 2.418129

Ul = 0.4830323

u2 - 0.1854337

u3 = 0.3234086

u4 = 0.1357262

u5 = 0.2605517

u6 z 0.3003115

u7 = -0.5957485

u8 = 0.4392162

u9 = 0.1573702

Ul 0 _ -0.3836328
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The mean-square error between the actual output and the desired

staircase output for the optimum linear filter, calculated by using

Equation (A2.11) is found to be 4.45086.
Next, a power-series controller is assumed, the input and output

for which are related through Equation (Ii), with M = 5.
The nonlinear correlation ordinates are computed as in Equations (15)

and (16) and the coefficients ak obtained as below:

aI = 9.270819

a2 = -2.219032

a3 = 0.009191157

a4 _ 0.0155692

a5 = -0.000012995

With these coefficients, the mean-square error is found to be 3.0306,

comparedwith 4.45086 for the linear case.
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Figure i: The Model Reference Type Adaptive System.

*SC = Sampler and Clamp
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Figure 2: Adaptive System not Requiring a Model
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Figure 4: Nonlinear Controller without storage.
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Figure 5: A Multipath No-storage Nonlinear Controller
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Figure AI.5 Figure AI.6

J'y(t)

Figure AI.7
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